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Abstract: As the global economies are still working diligently to recover from the COVID-19 pandemic impact, both 

public and private organizations are working diligently to improve resiliency of supply chains against future shocks 

alike. Thus, it is critical to understand the relationship between the existing vulnerabilities and current state of supply 

chains. This study aims to contribute building a framework to investigate the relationship between the economic 

welfare and supply chain structure during external shocks. Machine Learning (ML) methods are used to conduct the 

required analyses. The results reveal the strong relationships between the variables chosen in building the model. 
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1. Introduction 

Agile and effective logistical systems are crucial in the information age, as industrial and technical 

processes grow increasingly complex. The foundation of a successful supply chain (SC) is strong 

economic conditions and high logistic standards, such as transparency, dependability, and 

adaptability. Technology needs to be able to manage continuously changing processes and the 

increasingly complicated supply chains. The increase in diversity and data volume leads to larger 

information sets than ever before. It is often not viable or practical to process using typical, useful 

management techniques. Various methodologies and tools have been improved to analyze and 

assess these potentially profitable and new information sets, among them predictive analytics [1]. 
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Machine learning is one of such techniques that can be used effectively for forecasting. This 

process is successful because complex machine learning models are developed, massive data sets 

(also known as big data) are available, and hardware architectures like GPUs are used [2-4]. 

Machine learning technics are implemented to train machines how to coordinate massive amounts 

of information more efficient. Sometimes, traditional methodologies can’t remove or analyze data 

and patterns from the large amount of information [5]. For machine learning technics, the need is 

growing owing to the available data sets’ number. Machine learning technics are broadly utilized 

various sectors, containing the military and the medicinal area, to remove data and knowledge 

from information.  

Programmers and mathematicians have conducted numerous researches that have led to the creation 

of diverse machine learning as algorithmic [6]. Christoph's survey revealed a number of widely 

known machine learning algorithms, including the following: Decision Tree, Random Forest, K-

means, Logistic Regression, Support Vector Machine, Random Forest, Neural Networks, k-

Nearest Neighbor, Naive Bayes Sorter, Extreme Learning Machine, and Ensemble Algorithms [7-

12]. Benefits of applying machine learning techniques in sales and demand prediction [13–15], 

distribution and transportation [16–18], generation [19–21], inventory check [22], segmentation 

and supplier choice [23–26], and other areas have been highlighted by a few studies. Some of the 

most common learning algorithms and sample references together with a synopsis are illustrated 

in Table 1. 

Table 1. Six SCM activities employ ten ML algorithms. 
 Supply chain 

development 
Storage and 
Inventory 

Supply and 
Procurement 

Generation Distribu tion and 
Transportation 

Sales/Demand 
prediction 

K-means [27] - - - - [28] 
Naive Bayes Sorter - [29] [30] [31] [32] – 
Random Forest [33] - - [34] [35] – 
k-Nearest Neighbor - - - [34] [36] [37] 
Ensemble Algorithms [33] - [38] - - – 
Logistic regression [39] - [40] [34, 41] [35, 42] – 
Extreme Learn. Mach. - - - - - [43-46] 
Decision Tree - - - - [47] [48] 
Support Vect. Mach. [49-51] [29] [52-58] [34-35] [59-60] [61-63] 
Neural Networks [64-69] [70-71] [72-82] [83] [84-91] [92-103] 

 

In supply chain administration, this paper reviewed the machine learning use. While certain SCM areas are 

the current ML applications’ focus, other areas are still underutilized. This research therefore purposes to 

create a relationship among recent machine learning implementations, real investigation, and the SCM work 
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modelling. This enables the possible directions’ identification for further investigation within the SCM 

work modelling as well as the tasks’ depiction where ML approaches are already being used. 

Machine Learning and Artificial Intelligence is raising its popularity in the supply chain management field 

owing to its broad range of applications. Process optimization, forecasting, and automation are among the 

areas in which machine learning can add significant value to the supply chains. It can also help avoiding 

costly mistakes in all these spheres. Consequently, increased supply chain surplus can be shared through 

the supply chain partners, resulting in more profitable companies. Below is a list of many ML & AI 

applications currently being utilized across various industries [104]:  

• Artificial Intelligent in Shipping and Logistics – Autonomous Vehicles 

• Supply Chain Planning utilizing Machine Learning 

• Warehouse Management – Machine Learning in Logistics 

• Warehouse and Track Analysis 

• Demand Prediction 

• Logistics Route Optimisation 

• Estimating Peak Hours utilizing Artificial Intelligent in Logistics Centers 

• Supplier Relationship Management and Supplier Choice  

• Foreign Language Information Cleansing and Building Information Robustness 

• Workforce Design 

Not only these fields have the potential to significantly enhance competitiveness of the companies, they 

feel the constant pressure that stems from the fierce competition to adopt ML & AI solutions to increase 

their operational efficiency as well as customer service levels. There is no question that AI presents many 

opportunities in improving customer satisfaction by means of delivering the orders with increased precision 

and better condition.  

Since most of the studies have focused on one, two, or a small portion of the supply chain, there is a clear 

need in the scientific research to explore various applications of Machine Learning strategies in supply 

chains’ diverse regions. For example, Bai et al. divided providers according to environmental characteristics 

using a hybrid machine learning (ML) and multiple attribute decision-making (MCDM) strategy [105]. A 

review of ML in SCM was done by Darvazeh et al. [106]. ML was utilized through Baryannis et al. to 

forecast supply chain hazards [107]. ML approaches were used by Priore et al. [108] to determine the best 

replenishment rules for SCM. A supervised machine learning method for robust supplier selection was 

presented by Cavalcante et al. [109].  
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Piramuthu created an automated SCM system by utilizing machine learning technics [110]. To increase the 

hospital drug inventory operations’ effectiveness, Du et al. created one mechanism modelling based on the 

originally management stage employing BP neural networks and genetic algorithms [111]. The purpose of 

Teerasoponpong's suggested decision mechanism for resourcing and stock management is to assist medium 

and small-scale enterprises in gathering and utilizing data, as well as to help their decision strategy in the 

face of business uncertainty [112]. In order to streamline the farmers' agricultural fresh products’ inventory 

management at several linkages, such as supermarkets, distribution centers, professional cooperatives, and 

other areas, Shen et al. established an integrated model [113]. The inventory control troubles’ various 

modellings were proposed by Harifi et al. According to reference, these modellings were deterministic 

multi-produce, stochastic single-produce, and deterministic single-produce [114]. Dosdogru et al. suggested 

a novel hybrid method that consists of 2 stages and provides a general scheme for resolving the stock routing 

trouble [115]. In order to optimize the area, routing, and stock decision strategies for dispersion points and 

clients in supply chains of various levels, Wu et al. took on a multiple-period routing-inventory-location 

trouble with fuel usage and time windows [116]. To create the CFB function, Badakhshan and colleagues 

integrated cash movement modeling into the beer distribution game's SD structure [117].  

A multiple-objective general algorithm optimisation scheme k was given by Garg et al. for simulating the 

whip impact using NSGA for both decentralized and centralized supply chain management. The academic 

community has also given potential enhancements to stock management in a stochastical environment a 

great deal of attention [118]. The coordinated location-stock trouble in a stochastical supply chain 

mechanism, where supply is randomly disturbed, was the main emphasis of Liu et al. [119]. In an equivocal 

environment, multiple retailer supply chain operating under vendor-controlled stock strategy for just one 

supplier, Karimian et al. developed a financial production quantity modelling with multiple items with a 

shortfall [120].  

A framework for risk-based optimization was developed by Nezamoddini et al. to be used in operational 

choices. They put out a model that addresses uncertainty around lead times, facility disruptions, and supply, 

production, and distribution channel demands [121]. In order to coordinate between suppliers with limited 

capacity and lower supply chain risks, Liu and Li created a two level programming modelling for 

cooperative decision-making on product configuration and order allocation [122]. This model makes use 

of protective measures as well as coordination between providers.  

A machine learning-based supply chain risk management model was developed by Han and Zhang [123]. 

In addition to promoting a collaborator dispersion optimisation framework and algorithm for a perceptive 

supply chain management, Cai et al. also proposed green computing energy management and built a joint 
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optimisation modelling of VFP&VRP for logistics dispersion [124]. In a multiple area supply chain, Jolai 

and Gharaei used the 3-agent viewpoint of the producer, customer, and distributor to address the distribution 

problem and production scheduling [125].  

The air transportation and manufacturing scheduling trouble with time frames for the end-date was studied 

by Mousavi and colleagues [126]. Deng and colleagues examined the costs associated with carbon 

emissions during cold storage and transportation, the temperature variations’ effect on the ratio at which 

fresh goods degrade in the course of unloading, and the traffic patterns along the real distribution route 

[127].  

In order to further optimise the combined estimation modelling characteristics, Khan et al. introduced a 

combined modelling depend on extended short- time memory, neural networks (recurrent), one genetic 

algorithm, and recurrent (gated) units [128]. Under the worldwide shippings supply chain, Huang and Yang 

created a multi-item joint purchasing framework that included integrated purchase operations, delivery, 

various order cycles, and inventories depend on a cruise dispersion point [129]. Shen and colleagues 

employed the network equilibrium approach to create a SC modelling that takes into account the effort 

degree of various merchants and producers, and they coupled intelligent computing and big data to examine 

the clever SC mechanism for agricultural products [130].  

Using data from real-time supply chains, Ali and colleagues developed a new technique that shows how a 

SC may be created to address multiple-objective, multiple-product, and multiple-step supply chain troubles 

[131]. Hu and colleagues suggested an efficient Tabu research algorithm through making governments 

more aware of environmental issues as the creation of green supply chains has grown popular. This research 

finished the implementation and integration of the SCM mechanism scheme, allowing the mechanism to be 

portable and scalable. In the meantime, it examined the effectiveness of information grouping and CGAN 

balance degrees and performed them to partner choose in a dynamical supply chain [132]. 

In brief, machine learning (ML) has several real-world logistical applications that have surfaced in recent 

years, particularly in supply chain management. The investigation shows possibilities that may be impacted 

by the COVID-19 pandemic effect by connecting applicable machine-learning technics to the job modelling 

for supply-chain administration. 
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2. Methodology 

Machine learning methods are classified based on the problem they are developed to solve [133]. 

Figure 1 presents such a classification based on the tasks handled by various machine learning 

methods. 

 
Figure 1. Machine Learning Methods 

Linear Regression is one of such methods that is utilized within the scope of this study. Eight 

independent variables are used. Number of Covid cases/population, Number of Covid related 

Deaths, Death/Case ratio, Broadband penetration, Length of roads/land, Length of railroads/land, 
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Hospital beds/population, GDP growth 2019/2020. The ratio between the GDP growth in 2020 

and 2019 is treated as the dependent variable which is named as the “Slope”. 

2.1.Data 
A dataset involving 187 countries is developed for the purpose of this study through the databases of World 

Bank, OECD, Global Health Observatory, and World Health Organization. The descriptions of the variables 

are provided in Table 2. 

Table 2. Variable descriptions 
Variable Source 
GDP per capita growth (annual %) OECD and World Bank  [134] 
Rail transport network size Wikipedia [135] 
Road network size World Health Organization [136] 
Hospital beds World Health Organization  
COVID statistics Global Health Observatory [136] 

GDP per capita growth rate expressed as a percentage per annum in constant local currency. The 

gross value added by all resident manufacturers in the economy, plus any taxes on products and 

less any subsidies not included in the value of goods, is GDP at purchaser prices. It is calculated 

using World Bank and OECD national accounts data, excluding the depreciation of man-made 

assets and the depletion and deterioration of natural resources. 

2.2.Applying machine learning algorithms 

After making sure that the data is properly been cleaned and processed, the next step is dividing 

the data into train and test sets. The role of the train test split is crucial for knowing that models 

work appropriately on new data. During the determination of the train test split ratio, it is highly 

important to consider the data so that the variance is not too high. That is why several times the 

different ratios were executed in order to identify the best ratio. As a result, with the highest 

performance, the model was split into test and train sets with the ratio of 80 percent to 20 percent 

accordingly. It means that 80% of the data is dedicated to training and fitting the learning 

algorithms and the rest is devoted to testing the data in order to know how the model performs on 

new, actual, and untouched data. 

Machine Learning has 2 alternatives of technics such as unsupervised and supervised learning. 

With unsupervised learning there is only little information known about the data and so, the main 

idea behind this technique is to let the computer find the hidden insights and draw the conclusions 
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about the data by itself. Conversely, as its names suggest, the supervised learning works with the 

known set of data (input) and a known set of output and makes further predictions. 

The supervised learning divided into Regression and Classification. To add, regression algorithms 

are used for the continuous variables whereas classification technique is used for the discrete data. 

In the case of the variable prediction, the regression model is appropriate. For making the 

predictions as accurate as possible, there are different regression models and methods being used 

by researchers around the world.  

2.3.Multiple Linear Regression 

Linear Regression means modeling the mathematical relationship between two or more variables. 

It is commonly used when one variable is used in order to explain the other variable where the 

independent variable is used as an explanatory variable. In addition, the Multiple Linear 

Regression model is used only if the target variable is continuous and not discrete.  

As the name of the algorithm suggests linear regression assumes that there is a linear relationship 

between the target variable and the explanatory variable. However, in the real world it is very rare 

that one variable can be explained by only one other variable. Conversely, many factors impact on 

the determination of the target variable. Thus, when there is more than one explanatory variable in 

the dataset for the regression model, it is called Multiple Linear Regression.  

The equation for the multiple linear regression model as follows: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +. . . 𝛽p𝑥p + 𝜖	 	 	 	 (1) 

The sum of the linear parameters refers to 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +. . . 𝛽p𝑥p, where the 𝑝 implies to the 

number of independent variables and the 𝜖 refers to an error term. However, in the Multiple 

Regression equation the error term is assumed to be zero. Thus, the equation is equal to the 

summation of independent variables. 

(𝑦) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2  +. . . 𝛽p𝑥p    (2) 
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However, when the target variable is not actual but estimated, the estimated Multiple Linear 

Regression equation is used. 

ŷ = b0 + b1𝑥1 + b2𝑥2 +. . . bp𝑥p,    (3) 

where the 𝑏0, 𝑏1, 𝑏2, . . 𝑏p are the estimates of 𝛽0, 𝛽1, 𝛽2, ..., 𝛽p and the ŷ is the predicted value of 

an estimated variable. In machine learning, there are readily available libraries. Thereafter, the 

model is fitted with the few lines of code during the execution.  

Correlation table for the independent variables are provided in Table 1. 

Table 2. Correlation coefficients 

 deaths cases/pop death/case broadband road/land rail/land bed/pop gdp20 slope 

deaths 1.000000 0.411115 0.621532 0.317851 0.243898 -0.071109 0.084367 -0.12363 -
0.039024 

cases/pop 0.411115 1.000000 0.330908 0.559946 0.441552 0.409735 0.216838 -0.02864 0.038608 

death/case 0.621532 0.330908 1.000000 0.468342 0.425819 -0.151740 0.169080 0.08966 0.195816 

broadband 0.317851 0.559946 0.468342 1.000000 0.559288 0.086937 0.628490 0.11804 0.189929 

road/land 0.243898 0.441552 0.425819 0.559288 1.000000 0.366470 0.383814 0.12872 0.133543 

rail/land -0.071109 0.409735 -0.151740 0.086937 0.366470 1.000000 -0.026868 -0.06031 -
0.055539 

bed/pop 0.084367 0.216838 0.169080 0.628490 0.383814 -0.026868 1.000000 0.08200 0.012742 

gdp20 -0.123639 -0.028646 0.089661 0.118049 0.128727 -0.060317 0.082001 1.00000 0.737945 

slope -0.039024 0.038608 0.195816 0.189929 0.133543 -0.055539 0.012742 0.73794 1.00000 

3. Results and Discussion 

As there are eight independent variables, the Multiple Linear Regression (MLR) model is 

executed. As a result of the Multiple Linear Regression model, the following coefficients were 

determined for each of the independent variables. 

Table 3. The coefficients of the independent variables in MLR 
Deaths Cases/Pop Death/Case Broadband Road/Land Rail/Land Bed/Pop GDP20 

0.10219365 0.05626922 0.18709134 0.12092027 0.07122655 0.05975167 0.15594519 0.79316421 
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Machine learning algorithm searches through the data and finds a model existing among the 

independent variables and the dependent variable “slope” as an indication of the direction of 

economic activity under stress cause by the external shocks. Below is the model reflecting the 

coefficients found by the algorithm: 

y = −0.0382338	 − 	0.1021936(deaths) 	− 	0.0562692(cases − pop) 	+ 	0.1870913(death/case) 	+ 	0.1209202(broadband) 	−

	0.0712265(road/land) 	+ 	0.0597516(rail/land) 	− 	0.1559451(bed/pop) 	+ 	0.7931642(gdp20)    (4)  

In this equation, the impact of each independent variable on the changes of the dependent variable 

is reflected on the Multiple Linear Equation. Growth percentage of GDP per capita has a strong 

relationship with the dependent variable. Each one unit change on the Growth of GDP per capita 

is associated with an increase by 0.793 in the dependent variable. 

There are several different approaches for analyzing the performance of a given algorithm in 

machine learning. Within this paper several metrics such as MSE, RMSE, MAE, and R Squared 

were used. In statistics, the correlation is indicated by R and it is given in a range of from -1 to 1. 

It implies that if the correlation is closer to 1, that increase in x leads to an increase in y. Whereas 

if the correlation is closer to -1 then the increase in x implies the decrease in y. And 0 means there 

is no correlation between two or more variables. However, in machine learning it is popular and 

more useful to use R Squared. Consequently, the most popular and the most effective performance 

metrics for regression type algorithms were selected. There are R squared, Mean Absolute Error, 

Mean Squared Error and Root Mean Squared error. 

Table 4. The performance metrics for each algorithm 
R2 MAE MSE RMSE 

0.55288233135 0.079863980214 0.0089600428482 0.094657502863 

 

After using and applying those algorithms, first we look at the most important metric which is R 

Squared. R squared explains how strongly the changes in independent variables can cause the 

changes in independent variables. It also indicates the relationship of two or more variables, 

however, it ranges from 0 to 1 in order to avoid the misleading caused by the negative variance. 

In other words, R squared shows in percentage how the changes in independent variables can affect 

the target-dependent variable. For Multiple Linear Regression, the R squared shows 55% if 
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rounded. It means that the dependent variables can be explained by independent variables only in 

a ratio of 55 to 100. The chart below shows the ratio of predicted values in comparison to the actual 

values.  

The comparison of the actual and predicted values of the dependent variable is provided in Figure 

3. The results clearly indicate that the ML algorithm does a significant job in approximating the 

actual values. 

 

Figure 3. Actual vs. Predicted values 

Except the R squared for analyzing the performances of algorithms three more metrics were chosen. These 

are Mean Absolute Error, Mean Squared Error, and Root Mean Squared Error. Mean absolute error is a 

measure of the average magnitude of error generated by the regression model. It calculates the absolute 

difference between the model prediction and the actual values. The formula of the mean absolute error is 

as follows: 

𝑀𝐴𝐸 = ∑ |E!FG!|"
!#$

H
     (5) 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛	𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑒𝑟𝑟𝑜𝑟 

𝑦I = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑥I = 𝑡𝑟𝑢𝑒	𝑣𝑎𝑙𝑢𝑒 

𝑛 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠 

As the formula calculates the average magnitude of errors, if MAE shows 0, it means that the model works 

perfectly well on the new dataset. Thus, closer values of MAE to zero indicate a better model in terms of 
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estimating the dependent variable. Multiple Linear Regression resulted in a MAE showing approximately 

0.07. Overall, it is assumed that all the models have a low probability of making errors. 

In regression problems Mean Squared Error is one of the most popular metrics to measure. It is also called 

a cost function. It is highly similar to the mean absolute error, however instead of taking the absolute value 

of residuals, it squares them up. In addition, it is highly important to use MSE, because if there are outliers 

in the dataset, they become much larger. In the case of predicting the model, it is essential to get MSE in 

order to find the deviation between the actual and predicted values. The formula that determines the mean 

squared error is as follows: 

𝑀𝑆𝐸 = J
H
∑ ;𝑌I − 𝑌K>?

LH
IM!      (6) 

𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛	𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟 

𝑌I = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠 

𝑌K> = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠 

Table 5. Error Terms 
R2 MAE MSE RMSE 

0.5528823313 0.07986398021 0.008960042848 0.09465750286 

 

Root Mean squared error is also one of the most popular evaluation metrics in regression problems. Its 

origin comes from the Mean squared error. The Root Mean Squared Error is basically the square root from 

the mean squared error. In comparison to MSE it represents the standard deviation of the residuals and it 

explains how large the residuals are being dispersed in the data. RMSE is more easily explainable, because 

it takes a square root of the squared values. The formula of RMSE is as follows: 

𝑅𝑀𝑆𝐸 = B∑ (G!FG%O )&'
!#$

P
     (7) 

where; 

𝑅𝑀𝑆𝐸 = 𝑟𝑜𝑜𝑡 − 𝑚𝑒𝑎𝑛	𝑠𝑞𝑢𝑎𝑟𝑒	𝑒𝑟𝑟𝑜𝑟 

𝑥KC = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠 

𝑥I = 𝑎𝑐𝑡𝑢𝑎𝑙	𝑣𝑎𝑙𝑢𝑒𝑠 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑛 −𝑚𝑖𝑠𝑠𝑖𝑛𝑔	𝑑𝑎𝑡𝑎	𝑝𝑜𝑖𝑛𝑡𝑠 
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Various statistical tests are conducted to further analyze the reliability and validity of the model. Having 

strong correlations between the independent variables result in high multicollinearity which means one 

variable can be used to predict another. However, this is an undesired situation as it leads to redundant 

information, causing skewness of the results in the model [137]. 

The methods below are widely used to detect multicollinearity: 

• Excessive variance among the coefficient estimates of different models.  

• Non-significant t-tests for each of the individual slopes (p > 0.05) while significant F-test for testing 

all of the slopes (p < 0.05). 

• High correlations between pairs of predictor variables. 

Also it should be noted that evaluation of correlations between pairs of predictors can be misleading. A 

linear dependence may still exist among three or more variables while pairwise correlations are small. 

Another measure called variance inflation factors (VIF) is employed by many to detect multicollinearity in 

such cases. As the name suggests, variance inflation factor is used to calculate how much the variance is 

inflated. If there is multicollinearity, estimated coefficients’ standard errors are inflated. In a multiple 

regression model, a VIF exists for each predictor. For instance, VIF factor for the estimated regression 

coefficient bj (VIFj) is a factor by which bj coefficient’s variance is inflated by the correlation between the 

predictor variables of the model. 

VIF for the jth predictor is calculated as follows: 

𝑉𝐼𝐹Q =
J

JFR(
&      (8) 

where 𝑅QL  calculated by regressing the jth predictor over the rest of the predictors.  

A VIF value of 1 indicates that there is no correlation among the jth predictor and the remaining predictor 

variables, which means the variance of bj is not inflated. VIF values that are higher than 4 indicate a need 

for further investigation, while the values over 10 point out significant multicollinearity that needs to be 

corrected. 

Table 6. VIF Values 

1 2 3 4 5 6 7 8 
2.4 3.2 5.9 6.2 3.4 1.8 3.9 3.4 
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Residuals homoscedasticity is one of the assumptions of multiple regression and it consists of investigating 

whether regression residuals or forecasting errors have a constant variance. Breusch-Pagan 

heteroscedasticity test is used for this purpose [138] using squared original regression residuals as 

dependent variable along with original regression independent variables and evaluating if independent 

variables are statistically significant together. 

Breusch-Pagan test formula notation is as follows: 

𝜖!" = 𝛼 + 𝛽#𝑥#,! + 𝛽"𝑥",! + 𝑒!    (9) 

where;  

𝜖!"  : squared forecasting errors or original regression estimated residuals,  

𝛼   : regression constant,  

𝛽#	𝑎𝑛𝑑	𝛽" : regression coefficients,  

𝑥#,!	𝑎𝑛𝑑	𝑥",! : original regression independent or explanatory variables data,  

𝑒!  : forecasting errors or regression residuals. 

Heteroscedasticity is determined based on the following condition involving Breusch-Pagan 

Lagrange multiplier (BPLM) statistic p-value: 

If 𝑝 − 𝑣𝑎𝑙𝑢𝑒	 < 	𝛼 level of statistical significance then  

Residuals were heteroscedastic with (1 − 	𝛼) level of statistical confidence. 

Otherwise, residuals were homoscedastic with (1 − 	𝛼) level of statistical confidence. 

Residuals Homoscedasticity Breusch-Pagan Test results below are used to test the 

heteroscedasticity in the model. The results indicate that we cannot reject the null hypothesis of 

constant variance. Thus, there is no evidence of heteroscedasticity. 

BPLM	Test	Statistic:	35.1661 

BPLM	Test	P − Value:	0.6897 

Next, normality tests are used to check if the data is obtained from a sample exhibiting normal 

distribution. Various graphs can be used to test the normality of a variable. We can visually test 

the normality using graphs. A Quantile-Quantile Plot is utilized to plot the theoretical quantiles 
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against the actual variable quantiles. If our data comes from a normal distribution, we should see 

all the points placed on a straight line which is the case illustrated in Figure 4. 

 
Figure 4.  Normality graph 

 

4. Conclusions 

This study aims to contribute building a framework to investigate the relationship between the 

economic welfare and supply chain structure during external shocks. Machine Learning (ML) 

methods are used to conduct the required analyses. ML algorithm used in this study searches 

through the data and finds a model existing among the independent variables and the performance 

of an economy under stress caused by the external shocks. The results reveal the strong 

relationships between the variables chosen in building the model. However, this research is 

designed to build a machine learning framework which can be further expanded in a future research 

by incorporating new variables given the availability of data for a representative set of countries. 

Another venue for a future research is the investigation of relationship on a regional basis as 

opposed to the global scale utilized here. 
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